A six-dimensional alpha proton detection-based APSY experiment for backbone assignment of intrinsically disordered proteins.
نویسندگان
چکیده
Sequence specific resonance assignment is the prerequisite for the NMR-based analysis of the conformational ensembles and their underlying dynamics of intrinsically disordered proteins. However, rapid solvent exchange in intrinsically disordered proteins often complicates assignment strategies based on HN-detection. Here we present a six-dimensional alpha proton detection-based automated projection spectroscopy (APSY) experiment for backbone assignment of intrinsically disordered proteins. The 6D HCACONCAH APSY correlates the six different chemical shifts, H(α)(i - 1), C(α)(i - 1), C'(i - 1), N(i), Cα(i) and Hα(i). Application to two intrinsically disordered proteins, 140-residue α-synuclein and a 352-residue isoform of Tau, demonstrates that the chemical shift information provided by the 6D HCACONCAH APSY allows efficient backbone resonance assignment of intrinsically disordered proteins.
منابع مشابه
Six- and seven-dimensional experiments by combination of sparse random sampling and projection spectroscopy dedicated for backbone resonance assignment of intrinsically disordered proteins
Two novel six- and seven-dimensional NMR experiments are proposed. The new experiments employ non-uniform sampling that enables achieving high resolution in four indirectly detected dimensions and synchronous sampling in the additional dimensions using projection spectroscopy principle. The resulted data sets could be processed as five-dimensional data using existing software. The experiments f...
متن کاملAutomated projection spectroscopy and its applications.
This chapter presents the NMR technique APSY (automated projection spectroscopy) and its applications for sequence-specific resonance assignments of proteins. The result of an APSY experiment is a list of chemical shift correlations for an N-dimensional NMR spectrum (N≥3). This list is obtained in a fully automated way by the dedicated algorithm GAPRO (geometric analysis of projections) from a ...
متن کاملPseudo 5D HN(C)N Experiment to Facilitate the Assignment of Backbone Resonances in Proteins Exhibiting High Backbone Shift Degeneracy
Assignment of protein backbone resonances is most routinely carried out using triple resonance three dimensional NMR experiments involving amide 1 H and 15 N resonances. However for intrinsically unstructured proteins, alpha-helical proteins or proteins containing several disordered fragments, the assignment becomes problematic because of high degree of backbone shift degeneracy. In this backdr...
متن کاملAutomated Resonance Assignment of Proteins: 6 DAPSY-NMR
The 6-dimensional (6D) APSY-seq-HNCOCANH NMR experiment correlates two sequentially neighboring amide moieties in proteins via the C' and Calpha nuclei, with efficient suppression of the back transfer from Calpha to the originating amide moiety. The automatic analysis of two-dimensional (2D) projections of this 6D experiment with the use of GAPRO (Hiller et al., 2005) provides a high-precision ...
متن کاملFive and four dimensional experiments for robust backbone resonance assignment of large intrinsically disordered proteins: application to Tau3x protein
New experiments dedicated for large IDPs backbone resonance assignment are presented. The most distinctive feature of all described techniques is the employment of MOCCA-XY16 mixing sequences to obtain effective magnetization transfers between carbonyl carbon backbone nuclei. The proposed 4 and 5 dimensional experiments provide a high dispersion of obtained signals making them suitable for use ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomolecular NMR
دوره 60 4 شماره
صفحات -
تاریخ انتشار 2014